

engine runaway. ShockerEDGE is also the first of its kind to control a spark ignited gasoline engine.

TEST

P/N: GS-CNTRL-1.0 SN:13000162

Patent Pending www.headwindsolutions.ca 780-672-2775

We install a state-of-the-art gas sensor in the air intake system of the engine, that reads flammable gases. Unlike Cat bead/Pellister type sensors, the gas sensor calibrates itself every 2.0 seconds using up to date ambient temperature, barometric pressure, and relative humidity. It does not require bump gas, docking stations or an instrument technician to recalibrate 4 times a year.

PATENTE

The sensor reads the chemical composition of the air being drawn into the engine, then transmits the data to the ShockerEDGE controller and the ShockerEDGE display.

Once the data is received by the controller, it can be programmed to turn the engine off at 7.5% LEL, long before a diesel engine runaway can occur, or a gasoline engine starts to backfire. The controller can also be programmed to activate your ShockerPASS air shutoff valve on a diesel engine.

Main Screens Main A A A A A A A A A A A A A A A A A A A	 The data is also sent to the display, giving you a real time display of the sensors findings. Including: - System and sensor status Temperature, humidity, and barometric pressure Settings tab Gas status and identification Concentration of gas detected Alarm Status Data logging 	
Main And And And And And And And And And An	Event Log Image: Construction of the second sec	
Main Gas ID: Concentration: 7.6 %LEL LEL Alarm: System State: RH 34% 21.3°C 93 kPa	Details Screen Brightness: Screen Timeout: 10 min. Date: 10/18/2022 Time: 15:51:03 Temperature unit: °C Temperature unit: °C °F Time format: 24h 12h Date format: YMD MDY	

GAS CLASSIFICATION

CLASS 1: Hydrogen Molecular Weight: 2.0 [g/mol] Density: 0.09 [kg/m³] Number of Carbons: 0

CLASS 2: Hydrogen Mixture Avg. Mol. Weight: 1-14 [g/mol] Avg. Density: 0.1-0.6 [kg/m³]

Number of Carbons: varies This classification is unique as it guarantees the presence of hydrogen and another flammable gas

CLASS 3: Methane/Natural Gas

Avg. Mol. Weight: 16 to 19 [g/mol] Avg. Density: 0.6-0.9 [kg/m³] Typical Number of Carbons: 0-2 Gases having molecular properties similar to that of methane may be classified as methane (e.g. ammonia, acetylene)

GASES

CLASS 4: Light Gas (or Light Gas Mixture) Avg. Mol. Weight: 25 to 75 [g/mol] Avg. Density: 1.2-2.5 [kg/m³] Typical Number of Carbons: 1-4 Example Gases: Ethane, Propane, Isopropanol

CLASS 5: Medium Gas (or Medium Gas Mixture) Avg. Mol. Weight: 50 to 120 [g/mol] Avg. Density: 1.5-4.0 [kg/m³] Typical Number of Carbons: 2-8 Example Gas: Pentane

CLASS 6: Heavy Gas (or Heavy Gas Mixture) Avg. Mol. Weight: 80+ [g/mol] Avg. Density: 3.5+ [kg/m³] Typical Number of Carbons: 6+ Example Gases: Octane, Toluene, Xylene

Gas	Formula	Class ⁵	Detection Range [%LEL]	% Volume of gas at 100 %LEL (ISO 10156)	MPS Accuracy 0 to 50 %LEL (ISO 10156)	% Volume of gas at 100 %LEL (IEC60079-20-1)	MPS Accuracy 0 to 50 %LEL (IEC60079-20-1)
butane	C₄H ₁₀	4	0-100	1.8 %VOL	±5 %LEL	1.4 %VOL	±5 %LEL
ethane	C_2H_6	4	0-100	3.0 %VOL	±5 %LEL	2.4 %VOL	±5 %LEL
hydrogen	H ₂	1	0-100	4.0 %VOL	±5 %LEL	4.0 %VOL	±7 %LEL
isobutane	HC(CH ₃) ₃	4	0-100	1.8 %VOL	±5 %LEL	1.3 %VOL	±9 %LEL
isobutylene	C₄H ₈	4	0-100	1.8 %VOL	±5 %LEL	1.8 %VOL	±5 %LEL
isopropanol	C ₃ H ₈ O	4	0-100	2.0 %VOL	±10 %LEL	2.0 %VOL	+20 %LEL
methane	CH₄	3	0-100	5.0 %VOL	±3 %LEL	4.4 %VOL	±3 %LEL
MEK	C₄H ₈ O	5	0-100	1.4 %VOL	±5 %LEL	1.5 %VOL	+16 %LEL
pentane	C_5H_{12}	5	0-100	1.5 %VOL	±5 %LEL	1.1 %VOL	±6 %LEL
propane	C ₃ H ₈	4	0-100	2.1 %VOL	±6 %LEL	1.7 %VOL	±8 %LEL
propylene	C ₃ H ₆	4	0-100	2.4 %VOL	±5 %LEL	2.0 %VOL	±5 %LEL
acetone	C ₃ H ₆ O	5	0-100	2.5 %VOL	+20 %LEL	2.5 %VOL	+24 %LEL
ethylene	C_2H_4	4	0-100	2.7 %VOL	-12 %LEL	2.3 %VOL	-14 %LEL
heptane	C ₇ H ₁₆	5	0-100	1.1 %VOL	±12 %LEL	0.85 %VOL	±15 %LEL
octane	C ₈ H ₁₈	6	0-100	1.0 %VOL	±12 %LEL	0.8 %VOL	±15 %LEL
styrene	C ₈ H ₈	6	0-100	1.1 %VOL	-20 %LEL	1.0 %VOL	-17 %LEL
toluene	C ₇ H ₈	6	0-100	1.2 %VOL	±12 %LEL	1.0 %VOL	±13 %LEL
xylene	C ₈ H ₁₀	6	0-100	1.1 %VOL	±12 %LEL	1.0 %VOL	±13 %LEL

HWS has confirmed the MPS to detect diflouroethane, and diesel fuel(60*C). The MPS is also confirmed to detect other gasses including hexane, ammonia, acetylene, ethanol and methanol. The MPS does not detect Carbon Monoxide(CO) or Hydrogen Sulfide(H2S).

©2022 Headwind Solutions. ALL RIGHTS RESERVED Every effort has been made to assure the accuracy of this document at time of printing. In accordance with the company's policy of continued product improvement Headwind Solutions reserves the right to make product changes without notice. The products are routinely subject to testing which may result in some changes in the characteristics quoted. Technical info contained in this document or otherwise provided by Headwind Solutions is based upon tests, or experience that the company believes to be reliable, but the accuracy, completeness, and representative nature of such information is not guaranteed.