INSTALLER: This manual must remain in the unit for owner/operator.

OWNERS MANUAL

www.headwindsolutions.ca

CONGRATULATIONS ON THE PURCHASE OF YOUR

What is ShockerEDGE?

ShockerEDGE is a patented advanced technology that uses a Molecular Property Spectrometer (MPS) flammable gas sensor in conjunction with our own ShockerEDGE engine control system. The ShockerEDGE controller interprets the data from the MPS sensor, which is mounted in the engine's clean air intake stream and transmits the information to the visual display. The engine control parameters are preset to warn the operator of anything above 0% Lower Explosive Limit (LEL) and to turn the engine off at 7.5% LEL. This is accomplished by connecting the ShockerEDGE controller to the engine control system (ECM or fuel shut-off solenoid). When the upper LEL is reached, the ShockerEDGE controller turns off the power to the ECM or fuel control solenoid and stops the supply of fuel to the engine. The engine cannot be restarted while hydrocarbons are still present inside the engine's air intake system. This will occur **before** the diesel engine ingests sufficient unburnt hydrocarbons to sustain an engine runaway situation or cause a gasoline engine to backfire and stop ignition hazards on hot surfaces, IE: exhaust manifolds, catalytic convertors, spark generating devices. Shocker EDGE detects airborne hydrocarbons. It does NOT detect engine component failure. Shocker EDGE is raising site safety to new levels that have never been obtainable before, by monitoring the atmosphere while the engine is running.

WHY Choose ShockerEDGE

EDGE is the only product on the market that displays real-time gas monitoring, and ensures you are truly protected.

The Display

Referred to as

DISPLAY

and within the display are multiple screens. Ex: details, event log, graph, etc.

Information is shown in real-time on the display located in the operator's compartment.

Display features:

- Gas Identification
- LEL Concentration
- LEL Alarm Status Green, yellow, red
- System State Monitoring, fault, check events, etc.
- Ambient humidity, temperature and pressure
- Event Log Incidents & testing, graphs
- System Status 37 system self-diagnostic events
- Details Screen Set points, time, date, screen brightness, time out, etc.

The display will:

- Chirp at anything above 0% LEL warning level
- Constant audible buzz at 7.5 LEL shutdown

Auxiliary PASS, warning lamps and audible alarms can also be connected to the ShockerEDGE system.

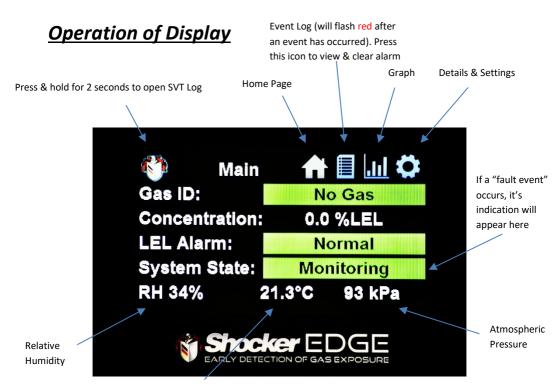
SYSTEM STARTUP MUST BE DONE IN A CLEAN AIR ENVIROMENT WITH 0% LEL AND AMBIENT TEMP BETWEEN -40°c/-40°f TO 75°c/167°f

Touch icon to clear starting alarm after monitoring is displayed.

<u>IMPORTANT WARNING:</u> System startup time is approximately 20-60 seconds and you are NOT protected until the display system reads "MONITORING".

System will not calibrate properly if hydrocarbons are detected on startup. Possible causes:

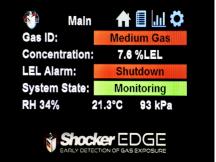
-Engine flooded

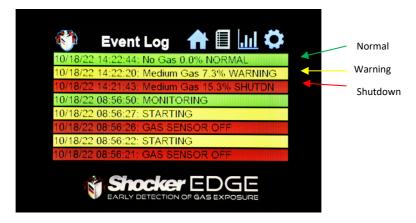

-Airborne Hydrocarbons

-Ether in the air intake

-Contaminated air filter(s)

- -Contaminated filter housing/piping
- -Oiled type air filter used


CALL 1-844-304-7277 FOR MORE ASSISTANCE



Sensor temperature in Celsius or Fahrenheit

Examples of "Warning" and "Shutdown" Screen

Press one of the four icons to remove or add a data line

Example of "Fault Event" Screen

Examples of "fault" events

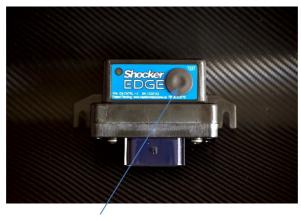
Press each gear symbol to edit: Screen Timeout, Date, and Time (follow exact layout when entering information)

Details Screen

Screen brightness indicator

Screen Timeout Function - IMPORTANT: The screen will shutoff following the amount of time selected. The screen will illuminate in event of alarm or system change, and shutoff after selected screen timeout has passed. When using this function, it is the *operator's responsibility* to check system state by tapping on the display to illuminate.

Back up Battery


The display is equipped with a 2032 button battery, this battery should be replaced every 4 years. Please send display to Headwind Solutions for replacement.

DOES THIS SYSTEM REQUIRE MAINTENANCE OR TESTING?

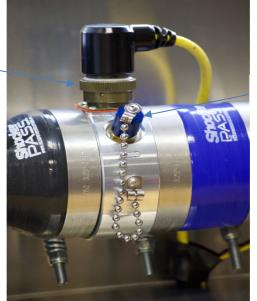
YES! TEST YOUR CONTROLLER WEEKLY AND COMPLETE SVT EVERY 90 DAYS MINIMUM!

Testing the Controller

With the engine running, press and release the "test" button. The engine will shut down, the display will alarm, and log the event. Make sure EDGE system works as intended and trips all functions that are connected.

- 1) Press and release the button to test the functionality of the electronics.
- 2) Press and hold the test button for 7 seconds to enable 1 minute bypass mode.

Sensor Verification Test (SVT)


- 1. Begin test on a cold non-running engine in a clean air environment
- 2. Press and hold the Shocker emblem for 2 seconds to open the SVT Log
- 3. Press and hold SVT icon for 2 seconds to put the display into test mode (will time out in 3-minutes)
- 4. Remove the blue SV port cap on sensor housing
- 5. Install the nozzle on SVS can
- 6. Place nozzle from SVS can against filter element on test port
- 7. Give one burst from the SVS can (approximately 1-2 seconds)
- 8. Check SVT log for WARNING or SHUTDOWN events. Wait 10 seconds, if no event shows on the display, repeat Step 7. If no event has shown after a max of 2 attempts, call TECH SUPPORT @ 1.844.304.7277
- Allow for gas to dissipate to 0% LEL or use the bypass function. ONLY use the bypass function if the home screen reads an LEL of less then 50% in the intake piping
- 10. Reinstall the blue cap on the sensor housing, finger tight this is the responsibility of the owner/operator. Improper installation may cause damage to the engine
- 11. Start the engine

REMINDER

YOU ARE NOT PROTECTED ONCE YOU ACTIVATE BYPASS MODE

Sensor Connector

SVT Port Cap

Important Reminders:

- Inspect wiring every 90 days
- Check all connectors for visible damage
- Check that the sensor connector is tight, if the sensor connector has been disconnected from the housing, the sensor base gasket must be replaced
- Check hose for holes or cracks, and replace as required
- Inspect clamps for tightness or damage
- If using starting fluid on diesel engines, the MPS sensor must be removed if spraying air filter housing
- When cleaning mass airflow sensor the MPS sensor must be removed
- The sensor has temperature protection shutdown at -58°c/-72°f and 88°c/190°f

GAS CLASSIFICATION

CLASS 1: Hydrogen

Molecular Weight: 2.0 [g/mol]

Density: 0.09 [kg/m³] Number of Carbons: 0

CLASS 2: Hydrogen Mixture

Avg. Mol. Weight: 1-14 [g/mol]

Avg. Density: 0.1-0.6 [kg/m³]

Number of Carbons: varies

This classification is unique as it guarantees the presence of hydrogen and another flammable gas

CLASS 3: Methane/Natural Gas

Avg. Mol. Weight: 16 to 19 [g/mol]

Avg. Density: 0.6-0.9 [kg/m³]

Typical Number of Carbons: 0-2
Gases having molecular properties similar to that of methane may be

classified as methane (e.g. ammonia, acetylene)

CLASS 4: Light Gas (or Light Gas Mixture)

Avg. Mol. Weight: 25 to 75 [g/mol] Avg. Density: 1.2-2.5 [kg/m³]

Typical Number of Carbons: 1-4

Example Gases: Ethane, Propane, Isopropanol

CLASS 5: Medium Gas (or Medium Gas Mixture)

Avg. Mol. Weight: 50 to 120 [g/mol]

Avg. Density: 1.5-4.0 [kg/m³] Typical Number of Carbons: 2-8

Example Gas: Pentane

CLASS 6: Heavy Gas (or Heavy Gas Mixture)

Avg. Mol. Weight: 80+ [g/mol] Avg. Density: 3.5+ [kg/m³] Typical Number of Carbons: 6+

Example Gases: Octane, Toluene, Xylene

GASES

			[%LEL]	(ISO 10156)	(ISO 10156)	(IEC60079-20-1)	(IEC60079-20-1)
butane	C₄H ₁₀	4	0-100	1.8 %VOL	±5 %LEL	1.4 %VOL	±5 %LEL
ethane	C₂H ₆	4	0-100	3.0 %VOL	±5 %LEL	2.4 %VOL	±5 %LEL
hydrogen	H ₂	1	0-100	4.0 %VOL	±5 %LEL	4.0 %VOL	±7 %LEL
isobutane	HC(CH ₃) ₃	4	0-100	1.8 %VOL	±5 %LEL	1.3 %VOL	±9 %LEL
isobutylene	C₄H ₈	4	0-100	1.8 %VOL	±5 %LEL	1.8 %VOL	±5 %LEL
isopropanol	C₃H ₈ O	4	0-100	2.0 %VOL	±10 %LEL	2.0 %VOL	+20 %LEL
methane	CH₄	3	0-100	5.0 %VOL	±3 %LEL	4.4 %VOL	±3 %LEL
MEK	C₄H ₈ O	5	0-100	1.4 %VOL	±5 %LEL	1.5 %VOL	+16 %LEL
pentane	C ₅ H ₁₂	5	0-100	1.5 %VOL	±5 %LEL	1.1 %VOL	±6 %LEL
propane	C₃H ₈	4	0-100	2.1 %VOL	±6 %LEL	1.7 %VOL	±8 %LEL
propylene	C₃H ₆	4	0-100	2.4 %VOL	±5 %LEL	2.0 %VOL	±5 %LEL
acetone	C₃H ₆ O	5	0-100	2.5 %VOL	+20 %LEL	2.5 %VOL	+24 %LEL
ethylene	C ₂ H ₄	4	0-100	2.7 %VOL	−12 %LEL	2.3 %VOL	-14 %LEL
heptane	C ₇ H ₁₆	5	0-100	1.1 %VOL	±12 %LEL	0.85 %VOL	±15 %LEL
octane	C ₈ H ₁₈	6	0-100	1.0 %VOL	±12 %LEL	0.8 %VOL	±15 %LEL
styrene	C ₈ H ₈	6	0-100	1.1 %VOL	-20 %LEL	1.0 %VOL	-17 %LEL
toluene	C ₇ H ₈	6	0-100	1.2 %VOL	±12 %LEL	1.0 %VOL	±13 %LEL
xylene	C ₈ H ₁₀	6	0-100	1.1 %VOL	±12 %LEL	1.0 %VOL	±13 %LEL

HWS has confirmed the MPS to detect difluoroethane, and diesel fuel (60*C). The MPS is also confirmed to detect other gases including hexane, ammonia, acetylene, ethanol and methanol. The MPS does not detect Carbon Monoxide (CO) or Hydrogen Sulfide (H2S).

CONTROLLER LED

LED Usage

There is a tri-color LED (red, blue, green) that signifies the operational status of the Shocker Edge controller. LED colors are assigned as follows:

- RED signals LEL detected
- BLUE signals operation of the gas sensor
- **GREEN** signals communications

Powerup-Normal

- 1. The blue LED blinks for ~1 second
- 2. The green LED blinks once after 3 seconds and then blinks every 25 seconds after approximately 2 minutes
- 3. The red LED will flash periodically

Powerup-Abnormal

- 1. The blue LED is constantly blinking means the sensor failed to start, reinitiate start up procedure
- 2. All colors blinking rapidly is an internal software issue, contact Headwind Solutions 1-844-304-7277

Event Log Messages

Class		Event Log Message	Details	
Display	Red	EDGE comms fail	Comm failure controller to display	
Alarm	Green	Gas ID/LEL % NORMAL	LEL- Normal - 0-2.49%	
	Yellow	Gas ID/LEL %WARNING	LEL- Warning - 2.5-7.49%	
	Red	Gas ID/LEL %SHUTDOWN	LEL- Shutdown - < 7.5%	
Controller	Red	GAS SENSOR OFF	Powered down-needs restart	
Status	Yellow	STARTING	Sensor powering up	
	Green	MONITORING	Normal operation	
	Red	FAILED	Sensor has failed	
	Grey	BYPASS	LEL detection has been bypassed	
Sensor	Green	SENSOR NORMAL	Sensor working normally	
Status	Blue	SENSOR COMM ERR	CRC-sensor detected a comm error	
	Blue	SENSOR COMM ERR	Bad parameter-comms error	
	Red	SENSOR FAIL	Failed execution of command	
	Red	SENSOR FAIL	Insufficient memory	
	Blue	SENSOR COMM ERR	Error in command received	
	Blue	SENSOR COMM ERR	Incomplete command received	
	Blue	SENSOR AO ERR	Analog out malfunction	
	Blue	SENSOR VOLT ERR	Internal voltage out of range	
	Blue	SENSOR REF VOLT ERR	Reference voltage out of range	
	Blue	SENSOR P,T,H ERR	Pressure/Temp/Humidity out of range	
	Red	SENSOR ERR	Malfunction	
	Red	SENSOR CPU ERR	Microcontroller error	
	Blue	SENSOR INIT ERR	Initialization error	
	Blue	SENSOR LEL TOO LOW	Level less then-15% LEL	
	Blue	SENSOR CONDENSATION	Condensation detected	
	Red	SENSOR ELEM ERR	Element malfunction	
	Blue	SENSOR HUMIDITY SURGE	Suspected humidity surge	
	Blue	GAS SENSOR STARTING	Will not report LEL for 104 seconds	
	Red	GAS DETECTED AT STARTUP	Gas at startup-move to clean air	
	Red	GAS SLOW BUILD DET	Detection of a slow buildup of gas	
Over	Green	SENSOR CURRENT NORMAL	Current draw normal	
Current	Red	SENSOR CURRENT HIGH	Over current-check wiring	
Shutdown	Green	CONTROLLER TEST END	Shutdown test ended	
	Brown	CONTROLLER TEST START	Start shutdown test	

Test Button

The "test" button on the front of the controller can be used for two purposes:

- Providing a test simulation of a high LEL being detected.
- Providing a temporary bypass by putting the controller in a normal state if a high LEL is detected.

LEL Test

Upon pressing and holding the "test" button, the blue LED will turn on, and if it is released before 5 seconds then the controller will simulate a LEL high gas detection.

LEL Bypass

Upon pressing and holding the "test" button, the LED will turn blue. If it is pressed for greater than 5 sec, the blue LED will start flashing. If the "test" button is released while the LED is flashing blue, the following will occur:

- 1. Terminates any LEL high gas detection
- 2. Sets Engine Shutdown pins 1-7 closed
- 3. Opens the Hold Valve pin 5
- 4. Turns off the Positive Air Shutdown pin 11

Operation of these outputs (2-4) is disabled for 60 sec.

<u>Warning</u>

Before initiating the bypass mode on the ShockerEDGE System—You must test your environment for airborne hydrocarbons—The atmosphere must read 0% LEL and the intake piping below 50% LEL before using the ShockerEDGE bypass mode! YOU ARE NOT PROTECTED IN BYPASS MODE! Headwind Solutions assumes no responsibility for damage or incidents while in bypass mode.

Maintenance

Every 90 days

- Perform SVT
- Inspect all wires and cables for wear
- Inspect all connections for corrosion and ensure they are tight
- Inspect controller, display, and mount for damage
- Inspect hoses and clamps if applicable
- Check that the sensor connector is tight, if the sensor connector has been disconnected from the housing, the sensor base gasket must be replaced

Yearly

- All the above
- Remove sensor and inspect dust screen for cleanliness (if cleaning required spray SVS on the sensor @ a 30-45-degree angle.) Do not spray at a 90degree angle as damage to the sensor could occur. Sensor base gasket and prefilter must be replaced before reinstalling sensor.

IMPORTANT

Minimum 12 GA wire must be used on the power and ground supply. Do not extend power and ground harness wires; doing so will void the warranty.

Connect controller to battery direct power
Connect display only to key-on key-off power

Warranty Disclaimer

Headwind Automotive Solutions Ltd. ("Headwind") wants you to be completely satisfied with your ShockerEDGE product (the "Product"). That is why Headwind offers a one-year limited warranty (the "Warranty") to the original purchaser or end user (the "Purchaser") for any Product sold. This Warranty does not cover any components sold by anyone other than Headwind.

Headwind will replace any defective Product part or entire Product which breaks or fails to function under normal use, so long as the failure is due to a defect in material or workmanship. This Warranty extends only to the repair or replacement of the defective part and does not extend to the cost of any repairs performed by the Purchaser.

To access this Warranty protection, the Purchaser must provide Headwind with written notice of any claimed defects with the product within ten (10) days after the Purchaser discovers the defect, along with proof of purchase. If approved for inspection, Headwind will issue an RMA# to be affixed on the return box and any paperwork accompanying the shipment, including the proof of purchase. Product returned for repair or replacement under this Warranty must be shipped with freight prepaid by the Purchaser to Headwind and will be returned freight collect.

This Warranty will be considered void in the following circumstances:

- a) If the Product has been modified, neglected, improperly maintained, misused, abused, accidentally damaged, tampered with, or if it appears that the damage to the Product has been caused by a failure to provide proper maintenance.
- b) If the Product has been exposed to the elements, including but not limited to floods, fire, lightning, storm, hurricanes, tornadoes, etc.
- c) If the Product has been subject to repairs not authorized in writing by Headwind
- d) If written notice of the defect is not provided to Headwind within one year of the purchase of the Product, or within ten (10) days of discovery of the defect, as stated above.

Headwind will charge the Purchaser for any costs arising if:

- a) The Purchaser fails to return the defective Product within 60 days of submitting a claim.
- b) The SKU of the returned product does not match the Product sold.
- c) The defective Product is returned with missing components.
- d) The returned Product is defective due to any of the circumstances detailed above rendering the Warranty void.

This limited Warranty will continue to protect the Product after any Warranty repairs are completed for the period of 90 days from the date of repair, or the remainder of the original warranty period for that Product, whichever is greater.

There are no express warranties offered by Headwind except for what is listed above. Headwind will not be liable for incidental or consequential damage resulting from the use of any Product or arising out of any breach of Warranty. All express or implied warranties, including warranties of the merchantability and fitness for a particular purpose are limited to the applicable warranty laid out above.

As there are many variables and requirements involved with any installation, Headwind assumes no responsibility or liability for actual use beyond that covered by this Warranty. Individuals purchasing ShockerEDGE products must look at all variables of their application and use their own judgment in evaluating product selection and determining product placement for each application and site requirements.

The Purchaser and/or End User is entirely responsibility for the correct selection, installation, routine testing, use, and all maintenance of ShockerEDGE products.

Check our website for troubleshooting videos and tips: www.headwindsolutions.ca

Sensor Verification Spray GS-SVS

SVT Log

Date:	Time:	Event:

Complete SVT every 90 days minimum

THANK YOU FOR CHOOSING

Manufactured in North America.

Check our website for

troubleshooting videos and tips.

www.headwindsolutions.ca

Toll Free: 1-844-304-7277

©2019 Headwind Automotive Solutions Ltd. All rights reserved.

www.headwindsolutions.ca

OCT 2025 3X